Structural evidence for Nap1‐dependent H2A–H2B deposition and nucleosome assembly

نویسندگان

  • Carmen Aguilar-Gurrieri
  • Amédé Larabi
  • Vinesh Vinayachandran
  • Nisha A Patel
  • Kuangyu Yen
  • Rohit Reja
  • Ima-O Ebong
  • Guy Schoehn
  • Carol V Robinson
  • B Franklin Pugh
  • Daniel Panne
چکیده

Nap1 is a histone chaperone involved in the nuclear import of H2A-H2B and nucleosome assembly. Here, we report the crystal structure of Nap1 bound to H2A-H2B together with in vitro and in vivo functional studies that elucidate the principles underlying Nap1-mediated H2A-H2B chaperoning and nucleosome assembly. A Nap1 dimer provides an acidic binding surface and asymmetrically engages a single H2A-H2B heterodimer. Oligomerization of the Nap1-H2A-H2B complex results in burial of surfaces required for deposition of H2A-H2B into nucleosomes. Chromatin immunoprecipitation-exonuclease (ChIP-exo) analysis shows that Nap1 is required for H2A-H2B deposition across the genome. Mutants that interfere with Nap1 oligomerization exhibit severe nucleosome assembly defects showing that oligomerization is essential for the chaperone function. These findings establish the molecular basis for Nap1-mediated H2A-H2B deposition and nucleosome assembly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct roles for histone chaperones in the deposition of Htz1 in chromatin

Histone variant Htz1 substitution for H2A plays important roles in diverse DNA transactions. Histone chaperones Chz1 and Nap1 (nucleosome assembly protein 1) are important for the deposition Htz1 into nucleosomes. In literatures, it was suggested that Chz1 is a Htz1-H2B-specific chaperone, and it is relatively unstructured in solution but it becomes structured in complex with the Htz1-H2B histo...

متن کامل

A basic domain in the histone H2B N-terminal tail is important for nucleosome assembly by FACT

Nucleosome assembly in vivo requires assembly factors, such as histone chaperones, to bind to histones and mediate their deposition onto DNA. In yeast, the essential histone chaperone FACT (FAcilitates Chromatin Transcription) functions in nucleosome assembly and H2A-H2B deposition during transcription elongation and DNA replication. Recent studies have identified candidate histone residues tha...

متن کامل

Structural Insights into the Association of Hif1 with Histones H2A-H2B Dimer and H3-H4 Tetramer.

Histone chaperones are critical for guiding specific post-transcriptional modifications of histones, safeguarding the histone deposition (or disassociation) of nucleosome (dis)assembly, and regulating chromatin structures to change gene activities. HAT1-interacting factor 1 (Hif1) has been reported to be an H3-H4 chaperone and to be involved in telomeric silencing and nucleosome (dis)assembly. ...

متن کامل

Arabidopsis NRP1 and NRP2 encode histone chaperones and are required for maintaining postembryonic root growth.

NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) is conserved from yeast to human and was proposed to act as a histone chaperone. While budding yeast contains a single NAP1 gene, multicellular organisms, including plants and animals, contain several NAP1 and NAP1-RELATED PROTEIN (NRP) genes. However, the biological role of these genes has been largely unexamined. Here, we show that, in Arabidopsis thaliana,...

متن کامل

Nucleosome formation with the testis-specific histone H3 variant, H3t, by human nucleosome assembly proteins in vitro

Five non-allelic histone H3 variants, H3.1, H3.2, H3.3, H3t and CENP-A, have been identified in mammals. H3t is robustly expressed in the testis, and thus was assigned as the testis-specific H3 variant. However, recent proteomics and tissue-specific RT-PCR experiments revealed a small amount of H3t expression in somatic cells. In the present study, we purified human H3t as a recombinant protein...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2016